0=-16t^2+98t+33

Simple and best practice solution for 0=-16t^2+98t+33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+98t+33 equation:



0=-16t^2+98t+33
We move all terms to the left:
0-(-16t^2+98t+33)=0
We add all the numbers together, and all the variables
-(-16t^2+98t+33)=0
We get rid of parentheses
16t^2-98t-33=0
a = 16; b = -98; c = -33;
Δ = b2-4ac
Δ = -982-4·16·(-33)
Δ = 11716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11716}=\sqrt{4*2929}=\sqrt{4}*\sqrt{2929}=2\sqrt{2929}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-2\sqrt{2929}}{2*16}=\frac{98-2\sqrt{2929}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+2\sqrt{2929}}{2*16}=\frac{98+2\sqrt{2929}}{32} $

See similar equations:

| 1/2x+1/6=1/8x+1 | | 3y^2=5.1y+1.2 | | 16k+4k+5k-23k=14 | | x=1/2,3x^2 | | 5x-12=5x | | 3y^2=1.5y+1.2 | | -6(7-2v)=-6(v-2) | | 9=16x-9 | | 21-{5x-(3x-1)}=5x-12 | | 15v-11v-15v+13v=2 | | 16-4x=22 | | x=-1,3x^2 | | x2+6X+-7=0 | | 4(3y-6)-8y=4 | | 10p-6p=8 | | 2(6-a)=-4+3(a-8) | | 17g+3g-19g=11 | | x=10,x^2-8x+11 | | 5x+8=4x+16 | | 10t-4t+t=14 | | 2x+6-18-6+(2+3)x=3x+5+12+2x+8 | | 15r-4r-11r+3r-2r=4 | | -4(n-2)=-(7n+4) | | 19(x+1)-14x=39 | | x/24=2 | | 2(4x+3+2x)=42 | | 3/5x-7/10=3/4 | | 5/6k-1/5=1/3 | | 6(b+5)+5(2-b)=2b+4b | | 5x-8=3-7x+12x-11 | | 12g+5g+3g-16g=4 | | X-12=3x-48 |

Equations solver categories